Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

\{ N-[Dimethyl $\left(\boldsymbol{\eta}^{5}\right.$-2,3,4,6-tetramethyl-indenyl)silyl]cyclobutylamido- κN \}($\boldsymbol{\eta}^{4}$-1,4-diphenyl-1,3-butadiene)titanium(II)

Khalil A. Abboud, ${ }^{\text {a }}$ * Peter N. Nickias ${ }^{\mathbf{b}}$ and Eugene Y.-X. Chen ${ }^{\mathrm{b}} \dagger$

${ }^{\text {a }}$ Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA, and ${ }^{\text {b }}$ The Dow Chemical Company, Corporate R\&D, Midland, Michigan 48674, USA
Correspondence e-mail: abboud@ufl.edu

Received 16 November 2000
Accepted 27 September 2001
The titanium metal center in the title compound, $\left[\mathrm{Ti}\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}-\right.\right.$ $\mathrm{Si})\left(\mathrm{C}_{16} \mathrm{H}_{14}\right)$, is coordinated in a distorted tetrahedral geometry by a η^{5}-indenyl ligand, a dimethylsilyl-bridged N-cyclobutylamido ligand and an s-cis- $\eta^{4}-1,4$-diphenyl-1,3-butadiene ligand in a 'prone' π-fashion, revealing a formal divalent Ti center.

Comment

Constrained-geometry catalysts are a very important catalyst family which has had a major impact on homogeneous olefin polymerization technologies (Stevens et al., 1991; McKnight \& Waymouth, 1998). In this catalyst family, constrainedgeometry titanium(II)-diene complexes, in particular, offer structural diversity and unique olefin polymerization activity (Devore et al., 1995). A common procedure used for the preparation of a variety of constrained-geometry titaniumdiene complexes is to react the corresponding dichloride precursor with two equivalents of ${ }^{n} \mathrm{BuLi}$ in the presence of excess diene. In the course of structure-activity studies of the constrained-geometry catalysts having ancilliary $\eta^{5}: \eta^{1}$ $\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{SiMe}_{2} \mathrm{~N}^{t} \mathrm{Bu}$, we found that when replacing ${ }^{t} \mathrm{Bu}$ of the ${ }^{\text {t }}$ BuN group in the ligand with less bulky secondary C atoms, such as cyclobutyl, the diene complex cannot be obtained using the common procedure. Considering the reactivity of the α-H atom of the N-cyclobutyl group, we found that the use of the milder ${ }^{n} \mathrm{BuMgBr}$ reagent instead of ${ }^{n} \mathrm{BuLi}$ successfully produced the desired titanium(II)-diene complex, viz. $\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-2,3,4,6-\mathrm{Me}_{4} \mathrm{C}_{9} \mathrm{H}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}\right) \mathrm{Ti}\left(s-c i s-\eta^{4}-1,4-\mathrm{Ph}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)$, (I), the structure of which is reported here.

The molecular structure of the title compound is depicted in Fig. 1 and selected geometrical parameters are given in Table 1. The Ti metal center is coordinated in a distorted tetrahedral

[^0]geometry by a η^{5}-indenyl ligand, a dimethylsilyl-bridged N-cyclobutylamido ligand and a 1,4 -diphenyl-1,3-butadiene ligand in a 'prone' π-fashion (Dahlmann et al., 2000; Devore et al., 1995; Erker et al., 1985; Yasuda et al., 1985). A $C p-\mathrm{Ti}-\mathrm{N}$ angle ($C p$ is the centroid of the indenyl five-membered ring) of $110.40(8)^{\circ}$ reflects the openness of the coordination sphere about Ti.

(I)

The 1,4-diphenyl-1,3-butadiene ligand adopts an s-cis orientation with the diene being bound to Ti in a π-fashion. The two $\mathrm{Ti}-\mathrm{C}($ terminal $)$ diene distances $[\mathrm{Ti}-\mathrm{C} 20=$ 2.217 (2) \AA and $\mathrm{Ti}-\mathrm{C} 23=2.233$ (2) \AA] differ from the two $\mathrm{Ti}-\mathrm{C}($ internal $)$ diene distances $[\mathrm{Ti}-\mathrm{C} 21=2.295$ (2) \AA and $\mathrm{Ti}-\mathrm{C} 22=2.295$ (2) \AA] by only $0.070 \AA$. The very small C-C distance differences [C20-C21 = 1.416 (3) $\AA, \mathrm{C} 21-\mathrm{C} 22=$

Figure 1
The molecular structure of (I) with 50% probability ellipsoids, showing the atom-numbering scheme.
1.397 (3) \AA and $\mathrm{C} 22-\mathrm{C} 23=1.419$ (3) \AA] in the diene ligand also support the assignment of a predominantly π-bound diene ligand (Dahlmann et al., 2000; Devore et al., 1995). A $\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$ torsion angle of $-0.6(4)^{\circ}$ reflects the coplanarity of these atoms.

The Ti-N distance of 1.963 (2) Å compares well with those in typical ${ }^{t} \mathrm{BuN}$ constrained-geometry T^{II} complexes (Dahlmann et al., 2000; Devore et al., 1995), but is considerably longer than in typical $\mathrm{Ti}^{\mathrm{IV}}$-amide complexes (Lappert et al., 1980).

Experimental

$\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-2,3,4,6-\mathrm{Me}_{4} \mathrm{C}_{9} \mathrm{H}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}\right) \mathrm{Ti}\left(1,4-\mathrm{Ph}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)$ was prepared from the reaction of $\mathrm{Me}_{2} \mathrm{Si}\left(\eta^{5}-2,3,4,6-\mathrm{Me}_{4} \mathrm{C}_{9} \mathrm{H}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}\right) \mathrm{TiCl}_{2}$ with two equivalents of ${ }^{n} \mathrm{BuMgBr}$ in the presence of one equivalent of trans-1,4-diphenyl-1,3-butadiene in hexanes under inert atomospheric conditions, using a similar procedure to that described previously by Devore et al. (1995). The resulting dark-red solution was stored at 238 K in a glove-box for 5 d , after which time dark crystals of the title complex had formed. The selected crystal was immersed in Paratone N oil and mounted on a thin glass fiber in a glove-box.

Crystal data

$\left[\mathrm{Ti}_{1}\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NSi}\right)\left(\mathrm{C}_{16} \mathrm{H}_{14}\right)\right]$
$M_{r}=551.68$
Monoclinic, $P 2_{1} / n$
$a=11.0726(6) \AA$
$b=20.509(1) \AA$
$c=13.9311(8) \AA$
$\beta=1212.020(1){ }^{\circ}$
$V=2932.9(3) \AA^{3}$
$Z=4$
$D_{x}=1.249 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4542
\quad reflections
$\theta=2.0-27.5^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Needle, black
$0.19 \times 0.15 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART diffractometer
ω scans
Absorption correction: analytical, integration based on measured indexed faces (SHELXTL; Sheldrick, 1998)
$T_{\text {min }}=0.931, T_{\text {max }}=0.973$
20107 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.103$
$S=0.96$
6740 reflections
383 parameters
6740 independent reflections 4070 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 13$
$k=-26 \rightarrow 15$
$l=-17 \rightarrow 18$

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0458 P)^{2}\right]$
> \quad where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.007$
> $\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.31$ e \AA^{-3}
$\mathrm{C}-\mathrm{H}$ distances of 0.98 and $0.99 \AA$ were used for methyl and secondary H atoms, respectively. A distance of $0.95 \AA$ was used for H atoms on $\mathrm{Cs} p^{2}$ atoms. The H -atom displacement parameters were set at $1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl H atoms) of the parent C atom. The H

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).
$C p$ is the centroid of the indenyl five-membered ring.

$\mathrm{Ti}-\mathrm{N} 1$	$1.963(2)$	$\mathrm{Ti}-\mathrm{C} 21$	$2.295(2)$
$\mathrm{Ti}-\mathrm{C} 1$	$2.242(2)$	$\mathrm{Ti}-\mathrm{C} 22$	$2.295(2)$
$\mathrm{Ti}-\mathrm{C} 2$	$2.355(2)$	$\mathrm{Ti}-\mathrm{C} 23$	$2.233(2)$
$\mathrm{Ti}-\mathrm{C} 3$	$2.476(2)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.416(3)$
$\mathrm{Ti}-\mathrm{C} 8$	$2.334(2)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.397(3)$
$\mathrm{Ti}-\mathrm{C} 9$	$2.490(2)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.419(3)$
$\mathrm{Ti}-\mathrm{C} 20$	$2.217(2)$		
			$86.82(8)$
$C p-\mathrm{Ti}-\mathrm{N} 1$	$110.40(8)$	$\mathrm{C} 20-\mathrm{Ti}-\mathrm{C} 23$	$125.7(2)$
$\mathrm{N} 1-\mathrm{Ti}-\mathrm{C} 20$	$99.09(8)$	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$126.1(2)$
$\mathrm{N} 1-\mathrm{Ti}-\mathrm{C} 23$	$99.33(8)$	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	
			$-0.6(4)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-20.5(2)$	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	

atoms on atoms C20-C23, as well as the methyl H atoms on C 10 and C11, were obtained from a difference Fourier map and refined without constraints $[\mathrm{C}-\mathrm{H}=0.93$ (2) -1.02 (3) $\AA]$. Full data collection details are in the relevant_special_details section of the archived CIF and have also been reported elsewhere (Abboud et al., 1997).

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

KAA wishes to acknowledge the National Science Foundation and the University of Florida for funding of the purchase of the X-ray equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1316). Services for accessing these data are described at the back of the journal.

References

Abboud, K. A., Ortiz, C. G., Palenik, R. C. \& Palenik, G. J. (1997). Acta Cryst. C53, 1322-1323.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dahlmann, M., Schottek, J., Frohlich, R., Kunz, D., Nissinen, M., Erker, G., Fink, G. \& Kleinschmidt, R. (2000). J. Chem. Soc. Dalton Trans. pp. 18811886.

Devore, D. D., Timmers, F. J., Hasha, D. L., Rosen, R. K., Marks, T. J., Deck, P. A. \& Stern, C. L. (1995). Organometallics, 14, 3132-3134.

Erker, G., Kruger, C. \& Muller, G. (1985). Adv. Organomet. Chem. 24, 1-39.
Lappert, M. F., Power, P. P., Sanger, A. R. \& Srivastava, R. R. (1980). Metal and Metalloid Amides, pp. 472-475. West Sussex, England: Ellis Horwood.
McKnight, A. L. \& Waymouth, R. M. (1998). Chem. Rev. 98, 2587-2598.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Stevens, J. C., Timmers, F. J., Wilson, D. R., Schmidt, G. F., Nickias, P. N., Rosen, R. K., Knight, G. W. \& Lai, S. (1991). Eur. Pat. Appl. EP 416 815-A2. Yasuda, H., Tatsumi, K. \& Nakamura, A. (1985). Acc. Chem. Res. 18, 120-126.

[^0]: \dagger Current address: Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.

