metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

{*N*-[Dimethyl(η^5 -2,3,4,6-tetramethylindenyl)silyl]cyclobutylamido- κN }-(η^4 -1,4-diphenyl-1,3-butadiene)titanium(II)

Khalil A. Abboud,^a* Peter N. Nickias^b and Eugene Y.-X. Chen^b†

^aDepartment of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA, and ^bThe Dow Chemical Company, Corporate R&D, Midland, Michigan 48674, USA Correspondence e-mail: abboud@ufl.edu

Received 16 November 2000 Accepted 27 September 2001

The titanium metal center in the title compound, $[Ti(C_{19}H_{27}N-Si)(C_{16}H_{14})]$, is coordinated in a distorted tetrahedral geometry by a η^5 -indenyl ligand, a dimethylsilyl-bridged *N*-cyclobutylamido ligand and an *s-cis-* η^4 -1,4-diphenyl-1,3-butadiene ligand in a 'prone' π -fashion, revealing a formal divalent Ti center.

Comment

Constrained-geometry catalysts are a very important catalyst family which has had a major impact on homogeneous olefin polymerization technologies (Stevens et al., 1991; McKnight & Waymouth, 1998). In this catalyst family, constrainedgeometry titanium(II)-diene complexes, in particular, offer structural diversity and unique olefin polymerization activity (Devore et al., 1995). A common procedure used for the preparation of a variety of constrained-geometry titaniumdiene complexes is to react the corresponding dichloride precursor with two equivalents of "BuLi in the presence of excess diene. In the course of structure-activity studies of the constrained-geometry catalysts having ancilliary $\eta^5: \eta^1$ -C₅Me₄SiMe₂N'Bu, we found that when replacing 'Bu of the ^tBuN group in the ligand with less bulky secondary C atoms, such as cyclobutyl, the diene complex cannot be obtained using the common procedure. Considering the reactivity of the α -H atom of the *N*-cyclobutyl group, we found that the use of the milder "BuMgBr reagent instead of "BuLi successfully produced the desired titanium(II)-diene complex, viz. $Me_2Si(\eta^5-2,3,4,6-Me_4C_9H_2)(C_4H_7N)Ti(s-cis-\eta^4-1,4-Ph_2C_4H_4),$ (I), the structure of which is reported here.

The molecular structure of the title compound is depicted in Fig. 1 and selected geometrical parameters are given in Table 1. The Ti metal center is coordinated in a distorted tetrahedral geometry by a η^5 -indenyl ligand, a dimethylsilyl-bridged *N*-cyclobutylamido ligand and a 1,4-diphenyl-1,3-butadiene ligand in a 'prone' π -fashion (Dahlmann *et al.*, 2000; Devore *et al.*, 1995; Erker *et al.*, 1985; Yasuda *et al.*, 1985). A Cp-Ti-N angle (Cp is the centroid of the indenyl five-membered ring) of 110.40 (8)° reflects the openness of the coordination sphere about Ti.

The 1,4-diphenyl-1,3-butadiene ligand adopts an *s-cis* orientation with the diene being bound to Ti in a π -fashion. The two Ti-C(terminal) diene distances [Ti-C20 = 2.217 (2) Å and Ti-C23 = 2.233 (2) Å] differ from the two Ti-C(internal) diene distances [Ti-C21 = 2.295 (2) Å and Ti-C22 = 2.295 (2) Å] by only 0.070 Å. The very small C-C distance differences [C20-C21 = 1.416 (3) Å, C21-C22 =

Figure 1

The molecular structure of (I) with 50% probability ellipsoids, showing the atom-numbering scheme.

[†] Current address: Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.

1.397 (3) Å and C22-C23 = 1.419 (3) Å] in the diene ligand also support the assignment of a predominantly π -bound diene ligand (Dahlmann et al., 2000; Devore et al., 1995). A C20-C21-C22-C23 torsion angle of -0.6 (4)° reflects the coplanarity of these atoms.

The Ti-N distance of 1.963 (2) Å compares well with those in typical 'BuN constrained-geometry Ti^II complexes (Dahlmann et al., 2000; Devore et al., 1995), but is considerably longer than in typical Ti^{IV}-amide complexes (Lappert et al., 1980).

Experimental

 $Me_2Si(\eta^5-2,3,4,6-Me_4C_9H_2)(C_4H_7N)Ti(1,4-Ph_2C_4H_4)$ was prepared from the reaction of $Me_2Si(\eta^5-2,3,4,6-Me_4C_9H_2)(C_4H_7N)TiCl_2$ with two equivalents of "BuMgBr in the presence of one equivalent of trans-1,4-diphenyl-1,3-butadiene in hexanes under inert atomospheric conditions, using a similar procedure to that described previously by Devore et al. (1995). The resulting dark-red solution was stored at 238 K in a glove-box for 5 d, after which time dark crystals of the title complex had formed. The selected crystal was immersed in Paratone N oil and mounted on a thin glass fiber in a glove-box.

Crystal data

$[Ti(C_{19}H_{27}NSi)(C_{16}H_{14})]$ $M_r = 551.68$ Monoclinic, P_{2_1}/n a = 11.0726 (6) Å b = 20.509 (1) Å c = 13.9311 (8) Å $\beta = 112.020$ (1)° V = 2932.9 (3) Å ³	$D_x = 1.249 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 4542 reflections $\theta = 2.0-27.5^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$ T = 173 (2) K Needle, black
Z = 4	0.19 \times 0.15 \times 0.09 mm
Data collection	
Bruker SMART diffractometer ω scans Absorption correction: analytical, integration based on measured indexed faces (<i>SHELXTL</i> ; Shel- drick, 1998) T _{min} = 0.931, T _{max} = 0.973 20 107 measured reflections	6740 independent reflections 4070 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 27.5^{\circ}$ $h = -14 \rightarrow 13$ $k = -26 \rightarrow 15$ $l = -17 \rightarrow 18$
Refinement	
Refinement on F^2	H atoms treated by a mixture of

Refinement on F ²	H atoms treated by a mixture o	
$R[F^2 > 2\sigma(F^2)] = 0.044$	independent and constrained	
$wR(F^2) = 0.103$	refinement	
S = 0.96	$w = 1/[\sigma^2(F_o^2) + (0.0458P)^2]$	
6740 reflections	where $P = (F_o^2 + 2F_c^2)/3$	
383 parameters	$(\Delta/\sigma)_{\rm max} = 0.007$	
	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$	
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$	

C-H distances of 0.98 and 0.99 Å were used for methyl and secondary H atoms, respectively. A distance of 0.95 Å was used for H atoms on Csp^2 atoms. The H-atom displacement parameters were set at $1.2U_{eq}$ (1.5 U_{eq} for methyl H atoms) of the parent C atom. The H

Table 1

Selected geometric parameters (Å, °).

Cp is the centroid of the indenyl five-membered ring.

Ti-N1	1.963 (2)	Ti-C21	2.295 (2)
Ti-C1	2.242 (2)	Ti-C22	2.295 (2)
Ti-C2	2.355 (2)	Ti-C23	2.233 (2)
Ti-C3	2.476 (2)	C20-C21	1.416 (3)
Ti-C8	2.334 (2)	C21-C22	1.397 (3)
Ti-C9	2.490 (2)	C22-C23	1.419 (3)
Ti-C20	2.217 (2)		
Cp-Ti-N1	110.40 (8)	C20-Ti-C23	86.82 (8)
N1-Ti-C20	99.09 (8)	C20-C21-C22	125.7 (2)
N1-Ti-C23	99.33 (8)	C21-C22-C23	126.1 (2)
C12-C13-C14-C15	-20.5 (2)	C20-C21-C22-C23	-0.6(4)

atoms on atoms C20-C23, as well as the methyl H atoms on C10 and C11, were obtained from a difference Fourier map and refined without constraints [C-H = 0.93 (2)-1.02 (3) Å]. Full data collection details are in the relevant special details section of the archived CIF and have also been reported elsewhere (Abboud et al., 1997).

Data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

KAA wishes to acknowledge the National Science Foundation and the University of Florida for funding of the purchase of the X-ray equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1316). Services for accessing these data are described at the back of the journal.

References

- Abboud, K. A., Ortiz, C. G., Palenik, R. C. & Palenik, G. J. (1997). Acta Cryst. C53, 1322-1323.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dahlmann, M., Schottek, J., Frohlich, R., Kunz, D., Nissinen, M., Erker, G., Fink, G. & Kleinschmidt, R. (2000). J. Chem. Soc. Dalton Trans. pp. 1881-1886

Devore, D. D., Timmers, F. J., Hasha, D. L., Rosen, R. K., Marks, T. J., Deck, P. A. & Stern, C. L. (1995). Organometallics, 14, 3132-3134.

Erker, G., Kruger, C. & Muller, G. (1985). Adv. Organomet. Chem. 24, 1-39.

- Lappert, M. F., Power, P. P., Sanger, A. R. & Srivastava, R. R. (1980). Metal and Metalloid Amides, pp. 472-475. West Sussex, England: Ellis Horwood.
- McKnight, A. L. & Waymouth, R. M. (1998). Chem. Rev. 98, 2587-2598.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Stevens, J. C., Timmers, F. J., Wilson, D. R., Schmidt, G. F., Nickias, P. N., Rosen, R. K., Knight, G. W. & Lai, S. (1991). Eur. Pat. Appl. EP 416 815-A2. Yasuda, H., Tatsumi, K. & Nakamura, A. (1985). Acc. Chem. Res. 18, 120-126.